
 MCCL User ’s Manual

HIWIN PCI-4P Motion Library

User’s Manual

Mar. 3. 2005

 MCCL User ’s Manual

 2

Contents

CONTENTS ... 2

1. INTRODUCTION TO MCCL MOTION LIBRARY ... 4

2. MCCL FEATURES ... 6

2.1 SOFTWARE SPECIFICATION ... 6

2.2 HARDWARE SPECIFICATION ... 7

2.3 DEFINITION OF CONTROL AXES .. 7

2.4 MECHANISM PARAMETER SETTING ... 8

2.5 INITIALIZE AND CLOSE MCCL... 16

2.5.1 Initialize MCCL ... 16

2.5.2 Close MCCL ... 22

2.6 MOTION CONTROL .. 22

2.6.1 Coordinate System... 22

2.6.2 Basic Trajectory Planning .. 23

2.6.3 Advanced Trajectory Planning .. 27

2.6.4 Interpolation Time and Acceleration/Deceleration Step Setting 31

2.6.5 System Status.. 33

2.7 HOMING ... 35

2.8 LOCAL INPUT/OUTPUT (I/O) CONTROL .. 38

2.8.1 Input . 38

2.8.2 Output . 38

2.9 ENCODER CONTROL .. 39

2.10 COMPENSATION AND IN-POSITION CONTROL .. 39

2.10.1 Compensation .. 39

2.10.2 Enable/Disable In-Position .. 42

3. COMPILER ENVIRONMENT ... 44

3.1 USING VISUAL C++ ... 44

3.2 USING VISUAL BASIC .. 45

 MCCL User ’s Manual

 3

 MCCL User ’s Manual

 4

1. Introduction to MCCL Motion Library

HIWIN PCI-4P provides Motion Control C Library (MCCL) and supports

Windows 98/2000/XP operating system.

It is to notice that for normal operation of motion library, we fixed some

hardware configuration. The relationship of application program with motion

library and hardware is shown below.

Application

PCI-4P Motion Card

Motion Library

MCCL provides point to point, linear, arc, and circular trajectory position

control; and there are furthermore motion delay, motion dry run, homing, short

stroke/pulse/continuous JOG, motion halt and motion abort operations. Position

control provides different acceleration/deceleration, feeding speed, maximum

speed, and maximum acceleration; besides there are software, hardware limit

protection, velocity blending, speed override and error message process to user ’s

requirement.

Regarding I/O signals, users make use of MCCL to read in the home and

limit switch signals, and also output servo on/off signal.

To use this motion library, users don’t need to understand in depth

complicated trajectory planning, position control and real time multiplex

environment, through this function library users call functions directly to

develop an integrated system in a very short t ime.

In all documentation of PCI-4P, there are two major categories of position

control:

1. Point to point motion, which characterize that axes start their motions

at the same time, however they do not necessarily stop at the same time.

 MCCL User ’s Manual

 5

2. General motion includes linear, arc and circular trajectory position

control. In this case, motions of axes are related and start and stop at

the same time.

RELATED MANUALS:

HARDWARE RELATED

 HIWIN PCI-4P hardware user ’s manual

MOTION LIBRARY

HIWIN PCI-4P motion library reference manual

HIWIN PCI-4P motion library example manual

HIWIN PCI-4P motion library user ’s manual

 MCCL User ’s Manual

 6

2. MCCL Features

2 .1 Software Speci f icat ion

g Operation System Environment

 WINDOWS 98

 WINDOWS 2000/XP

g Development Environment
 Visual C++ (VC++)

 Visual Basic

g Library Name

MCCL.h, MCCL_Fun.h (for VC++)

MCCLPCI_45.bas (for VB)

MCCLPCI_45.lib (for VC++)

MCCLPCI_45.dll

ACTADrv.dll

 MCCL User ’s Manual

 7

2.2 Hardware Speci f icat ion

User Application

Motion Library

PCI-4P

PCI-4P

PCI-4P

PCI-4P

Motor Driver

Motor Driver

Motor Driver

Motor

Motor

Motor

Motor Driver Motor

Figure 1 MCCL supports up to 12 PCI-4P cards

MCCL is used with HIWIN PCI-4P card, every HIWIN PCI-4P card controls

4 axes at most; HIWIN PCI-4P card sends out pulses as position command. The

basic structure is shown in Figure 1.

2.3 Def ini t ion of Control Axes

MCCL is designed for 3 rectangular axes (X-Y-Z), plus one extra axis for

motion control applications.

X

Z

Y U

Figure 2 3 Rectangular axes (X-Y-Z), plus auxiliary axis (U)

 MCCL User ’s Manual

MCCL provides axes synchronized or unsynchronized control. Motion

commands may be given as absolute or relative coordinate values. MCCL

internally records positions in absolute coordinates (relative to the origin).

2.4 Mechanism Parameter Sett ing

MCCL provides the following mechanism parameters to match user ’s actual

mechanism configuration. Each parameter corresponds to origin, coordinate

boundary and so on for each axis.

Ball

Screw

Table

dfPi tch
E n c o d e r

dwPPR

Con

type

{
M o t o r
N 1

dfGearR

= N 1 / wRPM

tents of mecha

def struct _SY
G

N 2

atio

N 2

Logical
d f Hi g h L i mi t O ff s e t

dfLowLimit dfHighLimit

t
d f L o w L i m i t O ff s e
 Home
Home dfOffset

Figu

nism p

S_MA
Encoder

Index

 8

re 3 Mechanism paramet

arameters are explained a

CH_PARA
+
-
er setting

s follows:

 MCCL User ’s Manual

 9

 WORD wPosToEncoderDir;

 WORD wRPM ;

 DWORD dwPPR ;

 double dfPitch ;

 double dfGearRatio;

 double dfHighLimit ;

 double dfLowLimit ;

 double dfHighLimitOffset ;

 double dfLowLimitOffset ;

 WORD wPulseMode ;

 WORD wPulseWidth ;

 WORD wCommandMode ;

WORD wPaddle ;

 HOME_CONFIG stHome ;

 ENCODER_CONFIG stEncoder ;

WORD wOverTravelUpSensorMode ;

WORD wOverTravelDownSensorMode ;

} SYS_MACH_PARAM;

wPosToEncoderDir：Direction adjustment parameter.

0 not reverse direction of output command

1 reverse direction of output command

This parameter is used when motion command direction is different from the

expected mechanism motion direction. For example if positive motion command

was sent but the motor moves in negative direction. Then setting this parameter

to ”1” will make motion command direction consistent with the direction of

mechanism.

wRPM： Maximum safe speed of motor.

Maximum safe speed. For point to point motion and jog motion, wRPM

parameter is used as reference speed.

 MCCL User ’s Manual

 10

 See Also MCC_SetPtPSpeed()

dwPPR： Pulse per revolution of rotary encoder.

For rotary servomotor, it is set to pulse number of encoder per revolution,

after considering 1x, 2x, and 4x encoder mode. The 1x, 2x, and 4x encoder mode

is set by MCC_SetENCInputRate().

For open loop stepping motor, there is no encoder; it is set to the number of

pulses, with which motor would turn one revolution.

For linear motor, this parameter could be set to any value. The recommended

value is 3000. However, notice that moving distance is calculated with the

following formula:

(Pulse × dfPitch)/(dwPPR × dfGearRatio)

For MCCL function call, the unit is always mm or inch except

MCC_JogPulse().

dfPitch： Ball screw pitch value. (lead)

 This parameter is the table displacement for one revolution of the ball screw;

its unit is mm. For linear motors, this value should be set 1.

dfGearRatio： Gear ratio

This is the number of revolutions of rotary motor when ball screw makes

one revolution.

dfHighLimit： Set value for positive software limit

This value is the maximum allowable displacement in the positive direction

relative to the logical home; its unit is mm.

 See Also MMC_SetOverTravelCheck()

dfLowLimit： Set value for negative software limit

This value is the maximum allowable displacement in the negative direction

relative to the logical home; its unit is mm. This value must be negative.

 MCCL User ’s Manual

 11

dfHighLimitOffset：Offset value for dfHighLimit

This value must be positive and can’t be greater than dfHighLimit . After

setting in the designated axis, i ts effective working interval in the positive

direction = dfHighLimit– dfHighLimitOffset

dfLowLimitOffset：Offset value for dfLowLimit

This value must be positive and can’t be greater than absolute value of

dfLowLimit. After setting in the designated axis, i ts effective working interval in

the negative direction = dfLowLimitOffset + dfLowLimit

wPulseMode： Pulse output mode.

0 Pulse/Direction

1 CW/CCW

2 A/B phase

wPulseWidth：Output pulse width.

Set the width of output pulse to satisfy driver ’s specification. The real

output pulse width is the set value multiplied by system cycle width (25 ns).

Please follow the driver ’s specification to set the output pulse width.

wCommandMode：Motion command output mode.

0 pulse command

wOverTravelUpSensorMode： Type of positive limit switch.

0 Normal Open (NO)

1 Normal Close (NC)

2 No limit switch is installed

wOverTravelDownSensorMode： Type of negative limit switch.

0 Normal Open (NO)

1 Normal Close (NC)

 MCCL User ’s Manual

 12

3 No limit switch is installed

wPaddle

Reserved data, users don’t need to set.

Users should call MCC_EnableLimitSwitchCheck() to enable checking limit

switch ;but when wOverTravelUpSensorMode and wOverTravelDownSensorMode

are set to 2, then calling MCC_EnableLimitSwitchCheck() will have no meaning.

There are two modes to call MCC_EnableLimitSwitchCheck().

Mode0: direction sensitive limit switches. For example move in the positive

direction and touch the positive limit switch or move in the negative direction

and touch the negative limit switch, it will stop outputting pulses (but that

command is sti l l in calculation).

Mode1: Not direction sensitive limit switches. As long as the limit switch is

engaged, i t will stop outputting pulses.

In general,MCC_EnableLimitSwitchCheck() and MCC_GetLimitSwitchStatus()

are used together. If limit switch was engaged, users should call

MCC_AbortMotion() to abort the motion command in execution.

Homing Parameters (HOME_CONFIG) :

This defines necessary homing parameters. Format and explanation are as

follows. Regarding homing related detailed explanation, please refer to later

sections.

typedef struct _HOME_CONFIG

{

 WORD wType ;

 WORD wPhase0Dir ;

 WORD wPhase1Dir ;

 WORD wSensorMode ;

 double dfOffset ;

} HOME_CONFIG;

 MCCL User ’s Manual

 13

wType: Homing mode.

0 NORMAL_MODE Use the encoder index closest to the

home sensor as the mechanism origin.

(Mechanism origin is also called

electrical origin. Mechanism origin

and logical origin will be explained

later.)

1 HOME_ONLY_MODE Home sensor as mechanism origin.

2 INDEX_ONLY_MODE Use the first encoder index as

mechanism origin.

wPhase0Dir: Motion direction for homing phase 0

0 positive direction

1 negative direction

wPhase1Dir: Motion direction for homing phase 1

0 positive direction

1 negative direction

wSensorMode: Type of home sensor

0 Normal Open (NO)

1 Normal Close (NC)

 MCCL User ’s Manual

 14

COM

HOM

NO

+24V

24V_GND

PCI-4P Motion Card
Home Sensor

COM

HOM

NC

+24V

24V_GND

PCI-4P Motion Card Home Sensor

Figure 4 Type of home sensor

dfOffset: Position offset of logical origin.

 During homing process and after mechanism origin was found, PCI-4P

would move a distance of dfOffset and stops. The point of stop is called logical

home. Notice that dfOffset could be positive or negative value. If it is set to 0,

mechanism origin is equal to logical home.

Set Encoder Format (ENCODER_CONFIG)：

typedef struct _ENCODER_CONFIG

{

WORD wType ;

WORD wAInverse ;

WORD wBInverse ;

WORD wCInverse ;

WORD wABSwap ;

WORD wPaddle[3];

} ENCODER_CONFIG

wType：Encoder type

0 A/B Phase

1 CW/CCW

 MCCL User ’s Manual

 15

2 Pulse/Direction

wAInverse：Whether to inverse phase A of encoder

1 Inverse

0 Not Inverse

wBInverse：Whether to inverse phase B of encoder

1 Inverse

0 Not Inverse

wCInverse：Whether to inverse phase Z of encoder

1 Inverse

0 Not Inverse

wABSwap：Whether to swap phase A and B of encoder

0 Swap

1 Not Swap

wPaddle：Reserve data, users don’t need to set.

 After collecting all the mechanism parameters, use MCC_SetMachParam() to

set them; an example is shown as follows:

SYS_MACH_PARAM stAxisParam;

stAxisParam.wPosToEncoderDir = 0;

stAxisParam.dwPPR = 500; // 3000 for Linear Motor

stAxisParam.wRPM = 3000; // 32767 for Linear Motor

stAxisParam.dfPitch = 1.0;

stAxisParam.dfGearRatio = 1.0;

stAxisParam.dfHighLimit = 50000.0;

stAxisParam.dfLowLimit = -50000.0;

 MCCL User ’s Manual

 16

stAxisParam.dfHighLimitOffset = 5.0;

stAxisParam.dfLowLimitOffset = 5.0;

stAxisParam.wPulseMode = 0;// Pulse/Direction

stAxisParam.wPulseWidth = 100;

stAxisParam.wCommandMode = 0;// P-cmd

stAxisParam.wOverTravelUpSensorMode = 2;// Not Check

stAxisParam.wOverTravelDownSensorMode = 2;

stAxisParam.stHome.wType = 0;// NORMAL_MODE

stAxisParam.stHome.wSensorMode = 0;// Normal Open

stAxisParam.stHome.wPhase0Dir = 1;

stAxisParam.stHome.wPhase1Dir = 0;

stAxisParam.stHome.dfOffset = 0;

stAxisParam.stEncoder.wType = 0;// A/B Phase

stAxisParam.stEncoder.wAInverse = 0;// Not Inverse

stAxisParam.stEncoder.wBInverse = 0;

stAxisParam.stEncoder.wCInverse = 0;

stAxisParam.stEncoder.wABSwap = 0;

MCC_SetMachParam(&stAxisParam, 0, 0);//set parameters for axis 0 of 0th-card

The mechanism parameters have to be set individually for every axis. Once

MCC_InitSystem() is called to initialize MCCL and you use

MCC_SetMachParam() to change mechanism parameters again, it is necessary to

call MCC_UpdateMachParam() to update them.

 See Also MCC_GetMachParam()

2.5 Ini t ia l ize and Close MCCL

2.5.1 Initialize MCCL

Two steps have to finish before using motion library (MCCL): the first is

 MCCL User ’s Manual

 17

mechanism parameter setting and the second is to initialize MCCL. This is

shown as Figure 5.

Initialize MCCL (MCC_InitSystem())

Set Mechanism Parameter (MCC_SetMachParam())

Figure 5 Steps before using MCCL

I t is not possible to use other functions in MCCL unless the steps are done

and no error code is returned. Regarding mechanism parameter please refer to

the previous section and PCI-4P motion library example manual, the procedure

of initializing MCCL is explained as follows:

Set Group Parameter

Before using MCCL, it is necessary to set groups. MCCL uses group

operation concept. Most of the functions provided by MCCL use group as

operation object. Every group includes x, y, z, u four axes. Groups are

dispatched to channels on PCI-4P card. MCCL supports up to 12 PCI-4P cards,

and every card can define up to 4 groups. MCCL supports 72 groups. Every

group is independent of each other, and won’t affect each other ’s operation. But

to guarantee system’s execution efficiency, the less group used the better.

Group related parameters are defined as follows:

typedef struct _SYS_GROUP_CONFIG

{

int nGroupUsed[72];

SYS_GROUP_INFO stGroupInfo[72];

} SYS_GROUP_CONFIG;

 MCCL User ’s Manual

 18

nGroupUsed[]

0 Use this group

-1 Not use this group

stGroupInfo[]

Use this to dispatch which channels on which card to a group, please refer

to the explanation as below:

typedef struct _SYS_GROUP_INFO

{

int nCardIndex ;

int nChannel[6];

} SYS_GROUP_INFO;

nCardIndex

Set card number (0 ~ 11) used by group.

nChannel[]

This dispatches channel on the PCI-4P with nCardIndex to x, y, z, u axes of

a group.

nChannel[0] nChannel[1] nChannel[2] nChannel[3] nChannel[4] nChannel[5]

X Y Z U not used not used

Set each according variable in the array to the channel number to dispatch.

Setting a value of –1 means that axis is not dispatched and thus no use of that

axis. Please set nChannel[4] and nChannel[5] to –1.

 MCCL User ’s Manual

 19

Group 0 Group 1 Group 71

0 1 2 3

Card 0

-1 -1 -1
X Y Z U

nGroupUsed[0] = 0

Group 2

nGroupUsed[2] = -1 nGroupUsed[71] = -1

X Y Z U

nGroupUsed[1] = 0

X Y Z U X Y Z U
-1

Figure 6 Example of group parameter setting

An example is shown in Figure 6. Two groups are used and one PCI-4P card

is inserted. The x, y axis of group 0 are dispatched to channel 0,1 of card 0 and z,

u axis in group 0 are not used. The x, y axis of group 1 will be dispatched to

channel 3, 4 of PCI-4P card 0 and z, u axis in group 1 are not used. Group

parameters are set as follows:

SYS_GROUP_CONFIG stGroupConfig;

for (WORD nIndex = 0; nIndex < 72; nIndex++)

stGroupConfig.nGroupUsed[nIndex] = -1;

stGroupConfig. nGroupUsed[0] = 0;

stGroupConfig.stGroupInfo[0].nCardIndex = 0;

stGroupConfig.stGroupInfo[0].nChannel[0] = 0; / /X

stGroupConfig.stGroupInfo[0].nChannel[1] = 1; / /Y

stGroupConfig.stGroupInfo[0].nChannel[2] = -1; / /Z is not used in example

stGroupConfig.stGroupInfo[0].nChannel[3] = -1; / /U is not used in example

stGroupConfig.stGroupInfo[0].nChannel[4] = -1;

stGroupConfig.stGroupInfo[0].nChannel[5] = -1;

 MCCL User ’s Manual

 20

stGroupConfig.nGroupUsed[1] = 0;

stGroupConfig.stGroupInfo[1].nCardIndex = 0;

stGroupConfig.stGroupInfo[1].nChannel[0] = 2; / /X

stGroupConfig.stGroupInfo[1].nChannel[1] = 3; / /Y

stGroupConfig.stGroupInfo[1].nChannel[2] = -1; / /Z is not used in example

stGroupConfig.stGroupInfo[1].nChannel[3] = -1; / /U is not used in example

stGroupConfig.stGroupInfo[1].nChannel[4] = -1;

stGroupConfig.stGroupInfo[1].nChannel[5] = -1;

/ / At last call this function to finish setting group parameter.

MCC_SetGroupConfig(&stGroupConfig);

Let’s take the example of MCC_Line(20, 20, 0, 0, 0, 0, 1), in which the last

argument 1 means group number. Thus channel 2, 3 of PCI-4P card 0 will output

phases for axis x, y in group 1. Furthermore：

MCC_Line(10, 10, 0, 0, 0, 0, 0); / /---- command 0

MCC_Line(15, 34, 0, 0, 0, 0, 0); / /---- command 1

MCC_Line(20, 20, 0, 0, 0, 0, 1); / /---- command 2

MCC_Line(73, 54, 0, 0, 0, 0, 1); / /---- command 3

These 4 lines will go into queue for motion executions. The queue for group

0 and group 1 are separate. This means command 0 and command 2 are first

command in their queue and will start at the same time. Command 0 and 1 are in

queue of group 0. Command 2 and 3 are in queue of group 1.

Without setting group parameters, preset value use group 0 only and x, y, z,

u axis of group 0 corresponds to channel 0 ~ 3 of card 0.

Set Hardware Parameter of Motion Control Card

Hardware parameter of motion control card is used to set the type of PCI-4P

card. The hardware parameters have to be set before calling MCC_InitSystem().

 MCCL User ’s Manual

 21

They are defined as follows:

typedef struct _SYS_CARD_CONFIG

{

WORD wCardType ;

WORD wCardAddress ; / /not used

WORD wIRQ_No ; / /not used

WORD wPaddle ; / /reserved

} SYS_CARD_CONFIG;

wCardType:

For PCI-4P motion control card it is always 2.

wCardAdress: Not used.

 This parameter can be any value.

wIRQ_No: Not used.

 This parameter can be any value.

wPaddle: Reserve data, users don’t need to set.

Initialize MCCL

Use MCC_InitSystem() to initialize MCCL， i t is declared as follows:

int MCC_InitSystem (int nInterpolateTime ,

SYS_CARD_CONFIG *psCardConfig ,

WORD wCardNo);

nInterpolateTime is interpolation time(please refer to explanation in later

section), the unit is ms, range is between 1 ms ~ 1000 ms, in general set to 5ms.

PsCardConfig is the hardware parameter of PCI-4P motion control card

explained earlier. wCardNo is the number of totally installed PCI-4P motion

 MCCL User ’s Manual

 22

control card. The following is an example of using two PCI-4P motion control

cards:

SYS_CARD_CONFIG stCardConfig[] = {{2, 0x200, 5, 0},{2, 0x240, 7 0}}

MCC_InitSystem(5, stCardConfig, 2);

2.5.2 Close MCCL

Call MCC_CloseSystem() to close MCCL.

2.6 Motion Control

2.6.1 Coordinate System

This category includes the following functions:

I. To choose between absolute command relative coordinate system.

 See Also MCC_SetAbsolute(), MCC_SetIncrease() , MCC_GetCoordType()

II. To set the unit: inch or mm

 See Also MCC_SetUnit() , MCC_GetUnit()

III. To get current coordinates

 See Also MCC_GetCurPos() , MCC_GetPulsePos()

No matter which coordinate system is selected, MCCL internally use

absolute coordinate (relative to logical home).

IV. To enable/disable software limit check

When software limit check is enabled, MCCL will check if the coordinate

exceeds limit at each interpolation time. If limit is exceeded, the card will stop.

Users can refer to error code by calling MCC_GetErrorCode().

 See Also MCC_GetOverTravelCheck() , MCC_ClearError()

V. To enable/disable limit switch check

 MCCL User ’s Manual

 23

 See Also MCC_EnableLimitSwitchCheck(),

MCC_ DisableLimitSwitchCheck(),

 MCC_GetLimitSwitchStatus()

2.6.2 Basic Trajectory Planning

MCCL provides point to point motion and general motion including linear,

arc and circular motion. Users should set feeding speed,

acceleration/deceleration type (S-curve or T-curve) and acceleration/deceleration

time according to the mechanism inertia and special demand. (See also 2.6.3 for

setting)

I. Point to point motion

Point to point motion applies to multi axis. Each axis starts simultaneously

with its own acceleration/deceleration time and speed, but doesn’t have to arrive

at the same time (see Figure 7). This is different from general motion. In case of

multi axis point to point motion MCCL waits t i l l all the axes have stopped then

it proceeds to next motion command.

Call MCC_PtP() to do point to point motion. It takes target position or

displacement of each axis as arguments. Each axis will move in the given feed

speed. If the returned value of MCC_PtP() is smaller than 0, this means

command was not accepted. Regarding the reason of rejection of command,

please refer to PCI-4P motion library reference manual. If the returned value is

greater than or equal to 0, i t means command code for this motion command.

Use MCC_ResetCommandIndex() to reset command code value.

Use MCC_SetPtPSpeed() to set the feeding speed of point to point motion

for axes in a group, one argument needed is speed ratio. i .e.

feeding speed for axes= maximum safe speed of each axis × (speed ratio /

100)

 (Unit: %)

 MCCL User ’s Manual

 24

In which the maximum safe speed (mm/sec) = (wRPM × dfPitch) /

(dfGearRatio × 60). For example for a speed ratio of 30, the feeding speed for

axes are ((wRPM × dfPitch) / (dfGearRatio × 60)) × 30 / 100 (mm/sec). For

linear motor， the feeding speed for axes is ((wRPM × dfPitch × wPPR) /

(dfGearRatio × 60)) × 30 / 100 (pulses/sec).

The default feeding speed ratio is 10 %. And the default

acceleration/deceleration time is 20 × Interpolation Time.

V

Time
V

Time
V

Time

Vx

Vy

Vz

Tx

Ty

Tz

Figure 7 Point to point motion

II. General Motion (Linear, Arc, Circular motion)

General motion includes linear, arc, circular multi axis synchronized

motion. If the returned value of general motion function is smaller than 0, this

means command was not accepted. Regarding the reason of rejection of

 MCCL User ’s Manual

 25

command, please refer to PCI-4P motion library reference manual. If the

returned value is greater than or equal to 0, i t means command code for this

motion command. Use MCC_ResetCommandIndex() to reset command code

value.

A. Linear motion

When using this, users provide target position or displacement for each axis.

Regarding speed and acceleration, they are set by MCC_SetFeedSpeed() and

MCC_SetAccStep(). The default acceleration/deceleration time is 20 ×

interpolation time.

 See Also MCC_SetFeedSpeed(), MCC_Line()

B. Arc motion

When using this, users provide a reference point (center) and a target point.

Regarding speed and acceleration, they are set by MCC_SetFeedSpeed() and

MCC_SetAccStep(). The default acceleration/deceleration time is 20 ×

interpolation time. MCCL also provides 3-D arc motion .

 See Also MCC_SetFeedSpeed(), MCC_ArcXYZ(), MCC_ArcXY(),

MCC_ArcYZ(), MCC_ArcZX()

C. Circular motion

When using this, users provide a center point and motion direction

(clockwise or counterclockwise). Regarding speed and acceleration, they are set

by MCC_SetFeedSpeed() and MCC_SetAccStep(). The default

acceleration/deceleration time is 20 × interpolation time.

 See Also MCC_CircleXY(), MCC_CircleYZ(), MCC_CircleZX()

D. Set feeding speed for General motion

The feeding speed for general motion is set by MCC_SetFeedSpeed(). The

value should not exceed the value for MCC_SetSysMaxSpeed(). The speed is in

target direction of motion.

 See Also MCC_GetFeedSpeed() , MCC_GetCurFeedSpeed() , MCC_GetSpeed()

 MCCL User ’s Manual

 26

III. Jog

There are 3 types of jog.

A. Pulse Jog

Jog with a distance designated in pulses (maximum pulse number= 2048);

this command can only be used when there is no motion. For example:

MCC_JogPulse(10, 0, 0)

 Displacement (pulse), axis number, group index

B. Short stroke Jog

Jog with a distance designated in mm or inch. Its speed is set as speed ratio

(similar to point to point motion); use MCC_AbortMotion() to stop. For example:

MCC_JogSpace(1, 20, 0, 0)

 Displacement (mm), feed speed ratio,axis number,group index

C. Continuous Jog

Jog continuously. Its speed is set as speed ratio (similar to point to point

motion). When it moves to the border, which is set by mechanism parameter, it

will stop. When software limit or limit switch are reached and their checks are

enabled, i t will also stop; use MCC_AbortMotion() to stop. For example:

MCC_JogConti(0, 20, 0, 0);

 Direction, feed speed ratio, axis number, group index

 (0: positive, 1: negative)

IV. Hold, continue, and abort motion

Use MCC_HoldMotion() to halt current command in execution (it slows

with constant deceleration and then stop motion). Then use MCC_ContiMotion()

to resume and finish executing the undone motion. Use MCC_AbortMotion() to

 MCCL User ’s Manual

 27

abort a motion in execution or to discard a hold motion.

 See Also MCC_GetMotionStatus()

2.6.3 Advanced Trajectory Planning

For more flexible, more efficient position control, MCCL provides advanced

trajectory planning. There are two types of velocity profile, namely T-curve and

S-curve. There is also velocity blending between different motion command, and

reach the designated position quicker. There is also speed override to adjust

feeding speed.

I. Acceleration/deceleration type

T

VV

A D T

CB

T-curve S-curve
Figure 8 Acceleration/deceleration type

There are trapezoidal curve or S curve velocity profile. For general motion,

the acceleration/deceleration type is the same for each axis in a group. However,

for point to point motion it is possible to set different type for different axis. In

S curve velocity profile, the s-factor is 1; this means the acceleration profile is

triangular curve.

 See Also MCC_SetAccType(), MCC_GetAccType()

 MCC_SetDecType(), MCC_GetDecType()

MCC_SetPtPAccType(), MCC_GetPtPAccType()

 MCCL User ’s Manual

MCC_ SetPtPDecType(), MCC_ GetPtPDecType()

II. Velocity blending

Use MCC_EnableBlend() to enable velocity blending function; this function

provides smooth transition in velocity between different motion commands.

There are:

 Line-line, l ine-arc, arc-arc motions:

It makes tangent speed and trajectory continuous.

 Continuous trajectory of point to point motion:

It makes each axis’s speed and trajectory continuous.

In set continuous trajectory motion, let constant speeds in different part

motion commands to become a continuous speed from one region to the second

region as in Figure 9, after the first constant speed region directly use S curve to

accelerate continuously to the second constant speed region of motion command,

thus the execution time of all the trajectory is faster, but in the connection of

commands there is some distortion exist. The diagram is shown in Figure 10. As

shown in Figure 9, the velocity transition between two motion commands is

smooth. The deceleration of first command and acceleration of second command

is no more there. This shortens the time to target. However the path deviates

from their original path.

Velocity

 t ime

Figure 9 Speed graph of velocity blending

 28

 MCCL User ’s Manual

 29

l ine-line l ine -arc arc-arc

Figure 10 line-line, l ine-arc, arc-arc motion

 See Also MCC_DisableBlend(), MCC_CheckBlend()

III. Speed override

In motion system, there are situations, where speed override becomes

important. Flying scissor mechanism is an example. When speed override is

executed, MCCL behaves like a new command is received. It accelerates from

current speed to the override speed (when <), or from current

speed decelerates to the override speed (when >), as in

Figure11.

1V 2V 1V 2V

1V 2V 1V 2V

Velocity

Time
V1 < V2

Velocity

Time
V1 > V2

V2

V1

V1

V2

Figure 11 Speed override

 For general motion:

Call MCC_SetOverSpeed() to set the speed override ratio and enforce

changing the tangent speed instantly. The speed ratio is

speed ratio = new speed / original speed × 100

 MCCL User ’s Manual

 30

in which original speed means the speed set by MCC_SetFeedSpeed().

 See Also MCC_GetOverSpeed()

 For point to point motion:

Call MCC_SetPtPOverSpeed() to set the speed override ratio and enforce

changing every axis’s speed. Please refer to the last section for definition of

speed ratio.

 See Also MCC_GetPtPOverSpeed()

IV. Motion dry run

Use MCC_EnableDryRun() to enable motion dry run. When this is enabled,

pulses won’t be sent out. But the users can use MCC_GetCurPos() and

MCC_GetPulsePos() to get the interal result of trajectory planning. Together

with proper graphic routines, the function can help users to get motion trajectory

to simulate on the screen.

 See Also MCC_DisableDryRun(), MCC_CheckDryRun()

V. Motion delay

Use MCC_DelayMotion() to get delay between motion commands. The unit

of delay time is the interpolation time (interpolation time is explained in coming

section); an example is shown as follows:

MCC_Line(10, 10, 10, 0, 0, 0);---------A

MCC_DelayMotion(200);

MCC_Line(15, 15, 15, 0, 0, 0);---------B

After finishing the motion command A, it will delay 200 × interpolation

time, then the motion command B will be executed.

 See Also MCC_CheckDelay()

VI. Error code

There are errors like over travel, exceeding the maximum set speed,

 MCCL User ’s Manual

 31

acceleration, arc command error and error during arc command execution etc.

Users can use MCC_GetErrorCode() to get the error codes. (Please refer to

“HIWIN PCI-4P motion library reference manual” about error codes.) When

errors occur, MCCL stops execution of all motion commands. Therefore, users

have to call MCC_GetErrorCode() to identify the error reason, and use

MCC_ClearError() to clear errors after which system will return to its normal

state.

2.6.4 Interpolation Time and Acceleration/Deceleration Step

Setting

I. Interpolation time

Speed

Max. Pulse Speed

Max. Pulse Acc.

Interpolation Time

Acc. Step
Dec. Step

Time

Figure 12 Interpolation time and related parameters

Interpolation time means the time between two interpolation points, as in

Figure 12. This is important for MCCL internal calculation. Minimum value is 1

ms, maximum value is 1000 ms. Users can call MCC_InitSystem() to set

interpolation time, or also use MCC_SetInterpolationTime() to set i t later any

time.

Interpolation time will affect acceleration/deceleration time, interpolation

accuracy, maximum speed, minimum speed and maximum

 MCCL User ’s Manual

 32

acceleration/deceleration. The maximum speed in pulse/ms is calculated by:

Max. Pulse Speed = (32768 / interpolation time) (pulse / millisecond)

 See Also MCC_SetMaxPulseSpeed(), MCC_SetMaxPulseAcc()

The minimum pulse sent in every interpolation time is 1. The minimum speed in

pulse/ms is calculated by

Min. Pulse Speed = (1 / interpolation time) (pulse / millisecond)

II. Set maximum pulse speed

Maximum pulse speed is used to restrict maximum pulse numbers that can

be sent out in every interpolation time and thus restrict feed speed of axis. Use

MCC_SetMaxPulseSpeed() to set it . The valid value can be set among 1~32768

and its default value is 30000 pulses.

 See Also MCC_GetMaxPulseSpeed()

III. Set maximum pulse acceleration/deceleration

Maximum pulse acceleration/deceleration is used to restrict the difference

of sent pulses between two neighbored interpolation times, thus the tracking

error will be reduced. If acceleration/deceleration time is set too small,

acceleration/deceleration will become too big for mass of the mechanism. Users

can use MCC_GetErrorCode() to diagnose if the acceleration/deceleration is too

large in motion. Users can set maximum pulse acceleration/deceleration by

MCC_SetMaxPulseAcc(); the value range is 1~32768 and its default value is

30000 pulses.

 See Also MCC_GetMaxPulseAcc()

IV. Acceleration/Deceleration step

The acceleration/deceleration time is calculated as follows:

 MCCL User ’s Manual

 33

Acceleration time = acceleration step × interpolation time

Deceleration time = deceleration step × interpolation time

Use MCC_SetAccStep() and MCC_SetDecStep() for general motion. Use

MCC_SetPtPAccStep() and MCC_SetPtPDecStep() for point to point motion.

Normally for higher feeding speed, users should set bigger acceleration time.

Therefore, MCC_SetAccStep() and MCC_SetDecStep() are usually used with

MCC_SetFeedSpeed(), so are MCC_SetPtPAccStep(), MCC_SetPtPDecStep() and

MCC_SetPtPSpeed().

feeding speed

t
Acc. time

V

Figure 13 Acceleration

To calculate the acceleration, use the formula:

 a = feeding speed / Acc. Time

in which feeding speed is in and Acc. Time is in second, thus the

acceleration is in . Use F = m × a to calculate the thrust force.

sm /
2/ sm

2.6.5 System Status

 Use MCC_GetCurPos() to get current command position in mm or inch unit.

Users can also use MCC_GetPulsePos() to get current command position in

pulse unit. If the system includes an encoder, use MCC_GetENCValue() to get

feedback position (unit: pulse).

 MCCL User ’s Manual

 34

 Users can use MCC_GetPtPSpeed() to get the feeding speed ratio of point to

point motion.

 For general motion use MCC_GetCurFeedSpeed() to get current feeding

speed; use MCC_GetSpeed() to get speed component of each axis in a group; use

MCC_GetFeedSpeed() to get feeding speed.

 Use the return value of MCC_GetMotionStatus() to get current motion status.

If the return value is 0 system is normal; if the return value is 1 motion is

stopped; and if the return value is 2 motion is hold by MCC_HoldMotion(), .

 Use MCC_ GetCurCommand() to get information of the motion command in

execution. The prototype of MCC_GetCurCommand() function is as follows:

MCC_GetCurCommand(COMMAND_INFO *pstCurCommand,

WORD wGroupIndex)

COMMAND_INFO saves information of the motion command in execution. It is

defined as follows:

Typedef struct _COMMAND_INFO

{

 int nType ;

 int nCommandIndex ;

 double dfFeedSpeed;

 double dfPos[6];

} COMMAND_INFO;

nType: Motion command type

0 point to point motion

1 linear motion

2 clockwise arc or circular motion

3 counterclockwise arc or circular motion

nCommandIndex: motion command index

 MCCL User ’s Manual

 35

dfFeedSpeed: feeding speed for general motion; speed ratio for point to point

motion

dfPos[]: target position; dfPos[4] and dfPos[5] are not used

Use MCC_GetCommandCount() to get the number of motion commands

which have not been executed. The motion command in execution is not counted.

If the return value of MCC_GetMotionStatus() were 1, the number of motion

commands in stock would be 0.

2.7 Homing

Users can set the order, speed, direction and mode of homing for each axis.

The order of homing for each axis is defined by parameters nXOrder ~ nUOrder

in MCC_GoHome(). Homing process of PCI-4P motion card is divided into phase

0 ~ phase 3 and explained as follows:

Phase 0: search and enter into home sensor area

In this phase, it searches home sensor (HOM0 ~ HOM3) with the speed

(dfXSpeed ~ dfUSpeed) in MCC_GoHome() and the direction wPhase0Dir in

mechanism parameter. When home sensor is ON then it starts to decelerate and

stop. At the position where it stops, home sensor must be ON, otherwise users

should lower homing speed and call MCC_GoHome() again. Call

MCC_SetGoHomeDecStep() and MCC_SetGoHomeAccStep() to set

acceleration/deceleration steps.

Phase 1: leave home sensor area

Leave home sensor area in the direction of wPhase1Dir set by mechanism

parameter. When home sensor is OFF, phase 1 is finished.

Phase 2: search encoder index

 MCCL User ’s Manual

 36

It moves in the direction of wPhase1Dir and finds the nearest index signal

and stops.

Phase 3: move to logical home

It moves a distance defined by stHome.dfOffset in mechanism parameter and

stops. The position of stop is the logical home.

The speed for phase 1, 2, 3 is about 1/10 of that for phase 0.

The mode of homing is set by stHome.dfType in mechanism parameter.

1. stHome.dfType = 0 (NORMAL_MODE): It will execute phase 0~phase 3.

2. stHome.dfType = 1 (HOME_ONLY_MODE): It will execute phase 0, 1 and 3.

(Phase 2 is not executed)

3. stHome.dfType = 2 (INDEX_ONLY_MODE): It will execute phase 2 and 3.

Function call procedure:

1. Set stHome in mechanism parameter (please refer to previous section)

2. Call MCC_GoHome(

double dfXSpeed , double dfYSpeed , double dfZSpeed,

double dfUSpeed , double dfVSpeed , double dfWSpeed ,

 int nXOrder , int nYOrder , int nZOrder ,

 int nUOrder , int nVOrder , int nWOrder ,

 WORD wCardIndex)

Where

dfXSpeed ~ dfUSpeed : Speed of homing for each axis (mm/sec)

dfVSpeed, dfWSpeed: not used

nXOrder ~ nUOrder : Order of homing

nVOrder, nWOrder : not used

 wCardIndex : Motion control card index

During homing process, users can use MCC_AbortGoHome() to stop homing

 MCCL User ’s Manual

 37

and also can use the return value of MCC_GetGoHomeStatus() to check if home

is finished. If the return value is 1, homing is finished. If the return value is –1,

homing is in process.

Phase 0

Phase 1

stHome.wPhase0Dir = 1(-)

Mechanism origin

Phase 2 Phase 3

Logical home

Phase 0

Phase 1 Phase 2 Phase 3

stHome.dfOffset

stHome.wPhase1Dir = 0(+)
+ pulse dir.+

Encoder
Index
Encoder
Index

Home SensorHome Sensor

- pulse dir.-

Start position

Figure 14 Homing example 1

Phase 0

Phase 1 Phase 2 Phase 3

Phase 0

Phase 1 Phase 2 Phase 3

stHome.dfOffset

stHome.wPhase0Dir = 0 (+)
- pulse dir.- + pulse dir.+stHome.wPhase1Dir = 0 (+)

Encoder
Index
Encoder
Index

Home SensorStart position

Mechanism origin Logical home

Figure 15 Homing example 2

 MCCL User ’s Manual

 38

2.8 Local Input /Output (I /O) Control

Local input and output include limit switch, home sensor, servo on and

PRDY signals.

2.8.1 Input

The local input on PCI-4P:

a. There are 4 home sensor input pins (HOM0, HOM1, HOM2, HOM3), and

users can use MCC_GetHomeSensorStatus() to read the signals.

b. There are 4 positive limit switch input (OT0+, OT1+, OT2+, OT3+) and 4

negative limit switch input (OT0-, OT1-, OT2-, OT3-). Users can use

MCC_GetLimitSwitchStatus() to read the signals.

c. There is 1 emergency stop input. User must open JP6 to enable emergency

stop function (JP6 Default: Short circuit) . User can use

MCC_GetEmgcStopStatus() to read the signal. If emergency stop signal is

received, the motion card will stop outputting pulses. If user want to send

pulses again, user must remove emergency stop signal and then call

MCC_InitSystem() function to initialize the system.

2.8.2 Output

The local output on PCI-4P:

a. There are 4 servo on/off control pins (SVN0, SVN1, SVN2, SVN3), and users

can use MCC_SetServoOn() and MCC_SetServoOff() to output servo on/off

signals.

b. There is 1 position ready signal (PRDY) for one PCI-4P card, and users can

use MCC_EnablePosReady() and MCC_DisablePosReady() to set or clear the

 MCCL User ’s Manual

 39

signal.

2.9 Encoder Control

Users have to set correctly the according parameters for encoder in

mechanism parameters.

If stEncoder.wType in mechanism parameters is set to 0 i.e. the input mode

of encoder is set to A/B phase, users can use MCC_SetENCInputRate() to set the

encoder mode. This value can be set to 1, 2 and 4 i.e. ×1, ×2 and ×4. The

default encoder mode is ×4.

Use MCC_GetENCValue() to get the encoder count value.

NOTICE

Please confirm that motion command and Encoder feedback value has the

same direction. If not, set Encoder mechanism parameter AB_swap = YES , so

that motion command and Encoder feedback have the same direction definition.

2.10 Compensat ion and In-Posi t ion Control

2.10.1 Compensation

Due to reality of manufacturing, it may make the system inaccurate in

position control. Foe examples pitch error, backlash error of ball screws and the

scale error of linear encoder system.

Pitch Error

d d + ε

Backlash Error

b

Figure 16 Pitch error, Backlash error

 MCCL User ’s Manual

 40

User can divide the whole stroke into several sections (see Fig.17). Use

laser interferometer to measure the error of forward and backward direction and

establish the compensation table. The compensation table consists of 2 arrays;

forward and backward. User need to designate dwInterval , wHome_No ,

nForwardTable and nBackwardTable and call MCC_SetCompParam() and

MCC_UpdateCompParam() to enable compensation. MCCL offers 256

compensation points for each axis; i t means it can be divided into 255 sections.

In each section, MCCL uses linear interpolation. Notice also that the

compensation range must cover the whole stroke of the system.

dwInternal wHome_No

Forward

Backward

0 1 2 3 4 5 6 7

Figure 17 Compensation sections

Contents of compensation parameters are explained as follows:

typedef struct _SYS_COMP_PARAM

{

DWORD dwInterval ;

 WORD wHome_No ;

 WORD wPaddle ;

 int nForwardTable[256];

 int nBackwardTable[256];

} SYS_COMP_PARAM ;

dwInterval : measurement interval. Unit is pulse. If the value is less than or

 equal to zero, i t means compensation is disabled.

wHome_No : This designates where the home is along the whole stroke.

 MCCL User ’s Manual

 41

wPaddle : Reseved.

nForwardTable[] : the forward compensation table.

nBackwardTable[] : the backward compensation table.

As shown in Fig.17, i t divides the axis into 7 sections; i t is necessary to measure

8 points (0 ~ 7). If the wHome_No is 4, this means that the home point is at the

end of fourth section. The compensation value at home must be set 0. If

dwInterval is set to 10000(pulse), it means the positive range is 10000 × (7 – 4)

= 30000 (pulses) and the negative range is 10000 × (4 - 0) = 40000 (pulses).

The mechanism parameters (dwHighLimit , dwLowLimit , dwHighLimitOffset ,

dwLowLimitOffset) must correspond to the compensation setting. The

compensation parameter of each axis must be set separately. An example is

shown as follows:

 SYS_COMP_PARAM stUserCompParam;

 stUserCompParam.dwInterval = 10000;

 stUserCompParam.wHome_No = 4;

 stUserCompParam.nForwardTable[0] = 22;// Unit is pulse

 stUserCompParam.nForwardTable[1] = 20;

 stUserCompParam.nForwardTable[2] = 15;

 stUserCompParam.nForwardTable[3] = 11;

 stUserCompParam.nForwardTable[4] = 0; / / Home position

 stUserCompParam.nForwardTable[5] = 10;

 stUserCompParam.nForwardTable[6] = 12;

 stUserCompParam.nForwardTable[7] = 15;

 MCC_SetCompParam(&stUserCompParam, 0, CARD_INDEX);

 MCCL User ’s Manual

 42

 MCC_UpdateCompParam();

MCCL uses linear interpolation within every section. For example, the

motor of X axis stands at home position then user wants to move 15000 pulses.

From the compensation table, it is known that the target is between

nForwardTable[5] and nForwardTable[6] (Because the target position is between

10000 pulses and 20000 pulses). Since nForwardTable[5] = 10 and

nForwardTable[6] = 12, the actual command is 15000 + 10 + round((15000 –

10000)/ 10000 × (12 – 10)) = 15000 + 10 + 1 = 15011 pulses.

2.10.2 Enable/Disable In-Position

User can use MCC_SetInPosTolerance() to set the in-position tolerance and

call MCC_EnableInPos() to enable in-position check. When executing two

consecutive commands, at the end of the first motion it ensures the error to be

within the in-position tolerance before going on to the next motion.

If user enables in-position check, after MCCL completed compute and sent

all pulses, then MCCL check whether the position error is within the tolerance.

If it checks OK, it executes the next motion command. If there is certain axis

which didn’t become in-position after the check time has passed (the check time

is set by MCC_SetInPosCheckTime()), the system error occurs and the following

motion commands are stopped. User can call MCC_GetErrorCode() to read error

code.

In Figure 18, the tolerance of X and Y axis is Tolerance[0] = 0.5mm,

Tolerance[1] = 0.3mm respectively. If the target position is (100, 100) and

current position is (99.7, 99), the X axis becomes in-position but Y axis is not.

Thus it is not in-position.

 MCCL User ’s Manual

 43

(100, 100)

(99.7, 99)

2 * Tolerance[0] = 2 * 0.5

2 * Tolerance[1] = 2 * 0.3

Target Position

Current Position

Figure 18 In-position tolerances setting

The larger the in-position tolerance, the shorter the execution time. But

there is larger error between the actual trajectory and planned trajectory near the

connect point (see Fig.19). Thus the range setting of in-position tolerance

depends on the requirements of different systems. User can use

MCC_GetInPosStatus() to check whether the error is within the tolerance.

 See Also MCC_GetInPosToleranceEx() MCC_DisableInPos()

Planned Trajectory Actual Trajectory A

Smaller
In-Position Tolerance

Actual Trajectory B

Bigger
In-Position Tolerance

Figure 19 In-position tolerance effect

 MCCL User ’s Manual

 44

3. Compiler Environment

3 .1 Using Visual C++

Including Files

 MCCL.h

 MCCL_Fun.h

Import Library (users have to add this file into project)

 MCCLPCI_45.lib

Dynamic Library (dynamic link file for run-time)

 MCCLPCI_45.dll

 ACTADrv.dll

It is shown below how to import Library i .e. the process of adding

MCCLPCI_45.lib into project.

Step 1 :

Use [Add To Project] under [Project]

Step 2:

Select MCCLPCI_45.lib add into Project

 MCCL User ’s Manual

 45

MCCLPCI_45.lib

It shows that the MCCLPCI_45.lib has been added into project.

MCCLPCI_45.lib

3 .2 Using Visual Basic

Including Files

 MCCLPCI_45.bas

Dynamic Library (dynamic link file for run-time)

 MCCLPCI_45.dll

 ACTADrv.dll

It is shown below how to add the required module i .e. the process of adding

MCCLPCI_45.bas into project.

 MCCL User ’s Manual

 46

Step1:

Use [Add]->[Module] under [Project]

Step 2:

Select MCCLPCI_45.bas, and add into module,

MCCLPCI_45.bas

MCCLPCI_45.bas

 MCCL User ’s Manual

 47

It shows that MCCLPCI_45.bas has been added into project.

MCCLPCI_45 (MCCLPCI_45.bas)

	1. Introduction to MCCL Motion Library
	2. MCCL Features
	2.1 Software Specification
	2.2 Hardware Specification
	2.3 Definition of Control Axes
	Figure 2 3 Rectangular axes (X-Y-Z), plus auxiliary axis (U)

	2.4 Mechanism Parameter Setting
	2.5 Initialize and Close MCCL
	2.5.1 Initialize MCCL
	2.5.2 Close MCCL

	2.6 Motion Control
	2.6.1 Coordinate System
	2.6.2 Basic Trajectory Planning
	2.6.3 Advanced Trajectory Planning
	2.6.4 Interpolation Time and Acceleration/Deceleration Step
	2.6.5 System Status

	2.7 Homing
	2.8 Local Input/Output (I/O) Control
	2.8.1 Input
	2.8.2 Output

	2.9 Encoder Control
	2.10 Compensation and In-Position Control
	2.10.1 Compensation
	2.10.2 Enable/Disable In-Position

	3. Compiler Environment
	3.1 Using Visual C++
	3.2 Using Visual Basic

