

Application Note

E 系列 MECHATROLINK-III 驅動器 搭配 KEYENCE KV STUDIO

> www.hiwinmikro.tw MD37UC01-2405_V1.2

修訂紀錄

手冊版次資訊亦標記於手冊封面右下角。

MD37UC01-2405_V1.2

一 手冊版次

- 發行年份與月份

發行日期	版次	適用產品	更新內容		
2024/05/20	1.2	E 系列 MECHATROLINK-III 驅動器	支援 E 系列驅動器·將 E1 更名為 E 系列。		
2023/10/18	1.1	E1 MECHATROLINK-III 驅動器	 更新 3.1 節定位控制。 更新 4.3 節原點感測器和 Z 相。 		
2023/06/30	1.0	E1 MECHATROLINK-III 驅動器	初版發行。		

相關文件

透過相關文件,使用者可快速了解此手冊的定位,以及各手冊、產品之間的關聯性。詳細內容請至本公司 官網→下載中心→手冊總覽閱覽(https://www.hiwinmikro.tw/Downloads/ManualOverview_TC.htm)。

序言

本手冊詳細說明 E 系列 MECHATROLINK-III 驅動器搭配 KEYENCE KV-7000 系列 PLC 時, PLC 軟體 KV STUDIO 的操作。

軟硬體規格

名稱	軟體/韌體版本		
	軟體 (Thunder) : 1.9.16.0 以上		
E 忝列 MECHATROLINK-III >> 副 番	韌體:2.8.16 以上		
	軟體(KV STUDIO): 11.61 以上		
KEYENCE KV-7500	韌體: 2.400 以上		
KEYENCE KV-XH04ML	韌體: 1.106 以上		

目錄

1.	連線	與模組設定	1-1
	1.1	硬體設備介紹	1-2
	1.2	IP 設定與連線	1-4
	1.3	軸配置	. 1-12
2.	參數	設定	2-1
3.	試運	轉	3-1
	3.1	定位控制	3-2
	3.2	起動速度、加減速度/時間、加速曲線	3-4
4.	原點	复歸	4-1
	4.1	Z 相立即原點復歸	4-2
	4.2	限位開關上升緣	4-3
	4.3	原點感測器和 Z 相	4-4

1. 連線與模組設定

1.	連紡	與模組設定	1-1
1	L.1	硬體設備介紹	1-2
1	L.2	IP 設定與連線	1-4
1	3	軸配置	1-12

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

1.1 硬體設備介紹

圖 1.1.1

KEYENCE KV-7500 本身是由一塊 CPU 單元和一塊或多塊定位運動單元組成的控制器。第一次使用時,需要將 CPU 單元與定位運動單元拼合,並且準備 24 VDC 1.8 A 的電源供應器供給 CPU 單元。CPU 單元主要負責與電腦連線,定位運動單元主要負責與驅動器連線。

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

連線與模組設定

■ 區域 A

CPU 單元的型號。

■ 區域 B

LCD 螢幕顯示器。

■ 區域 C

電腦 USB 連接孔。

- **區域 D** CPU 單元網路連接孔。
- 區域 E

LED 顯示燈。 紅燈:單元連線失敗。 綠燈:單元連線成功。

■ 區域 F

定位運動單元的型號。

■ 區域 G

運動單元網路連接孔。

運動單元和驅動器需使用 Keyence 特製的網路線 · 一般的網路線可能無法成功通訊。

MD37UC01-2405

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

1.2 IP 設定與連線

1. 第一次設定時,先將 USB 傳輸線和網路傳輸線連上 CPU 單元和電腦,並打開 KV STUDIO 軟體介面。

圖 1.2.1

2. 新建專案。

(在此步驟中,「確認單元配置設定」先按否,不讓單元配置自動產生。後續第6步再進行設定。)

	KV STUDIO							
檔	案(F) 檢視(V) 監控器/模擬器	(N) 運轉記録	泉/重放(R) エ	E具(T) 視窗(W)				
	新建專案(N)	Ctrl+N	新建専案			×		
-	打開專案(O)	Ctrl+O	專案名(N)		支持的機型	₽(K)		
	登錄感測器設定檔(E)		 位置(P)		KY-7500	~		
	記憶卡(M)	•	C:\Users\paulis	king\Documents\KEYE	NCE/KVS11G/K	參照(\$)		
	設定印表機(VV)		<u>Σ</u> τφ(C)			^		
	在最近的専案(D)	•				~		
	退出(X)		詳細(D)		OK	取消		
_					確認耳	単元配置設定		×
					是否存	E最初設定單元配	置?	
					*[是] *[否] *[讀]] 啟動單元編輯器] 關閉這個對話詞 取單元配置] 從]	器。 見窗。 №C讀取單元配置。	
						是(Y)	否(N)	讀取單元配置(U)

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

連線與模組設定

3. 將 IP 位址設定為 192.168.0.100, 與控制器同一個網域。

😰 網路連線		- 0 X
← → ◇ ↑ 😰 > 控制台 >	م	
組合管理 ▼	網際網路通訊協定第 4 版 (TCP/IPv4) - 內容 🛛 🗙	
乙大網路 無法時間的網路 Intel(f € thernet Conne		
	□ 結束時確認設定(L) 進階(V)	
1 個項目	福定 取消	

圖 1.2.3

KV STUDIO 模式請選擇編輯器,使後續的操作可進行。 4.

圖 1.2.4

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

5. 通訊模式請選擇 USB。

KV ST	UDIO -[編	輯器: KV-1	7500] - [T	EST7 *]									
檔案(F)	編輯(E)	檢視(V)	程式(M)	ST/腳本(S)	轉換(A)	監控器/模擬器(N) 除錯(D)	工具(T)	視窗(W)	說明(H)			
i 🗋 🍋		a 🔁 💀	k 🖶 🗋	🕜 🔛 U	SB	-	🗈 🚏 📲	ið 🖄 📾	Si 🖽 💻		F5 SF5	F4 SF4	F7 SI -0%
: 🗶 🗄	i 🔀 🛙	50 FF 🛛	1 🕇 🗟) 🗟 🛄 📲	SB All		• • • •	> •	- 4 0	Ren : 編輯器			-
専案		ņ	×	Ž	太網								
	「記置」 (0) KV-1 医thei 切換算 (1) KV-1 日本 (1)	7500 Net/IP 配 執 行 型 模 組 組 組 組 組 組 組 組 組 組 組 組	R3C 2∐	II 實理	uetooth 料機 由設定								

圖 1.2.5

6. 點擊左上角的單元配置,再按右鍵選擇單元編輯器。

IN KV STUDIO -[編輯器: KV-7500] - [TEST7 *] 檔案(F) 編輯(E) 檢視(V) 程式(M) ST/腳本(S) 轉換(A) 監控器/模擬器(N) 🗄 🗋 😝 🔚 📾 🛸 🛤 🖶 🗋 🔾 🕐 🗄 🏗 USB - 🗄 🗈 専案 **μ**Χ ■-副| 單元配置 🗏 🚺 [0] 🗮 單元編輯器(U) F 🕼 切換 🗹 🔮 郵件設定(T)... 🏧 元件注释 🛄 郵件通訊命令編制者(R)... 標號 무 簡易PLC連接設定(G)... CPU 条統 🗉 🏫 程式:TI 🛒 🛛 FTP 用戶端設定(J)... 🗉 🚞 每次 📈 記錄/追蹤設定(L)... 😐 🔜 M **_** 錯誤監控器(W) 初始 後備 掃描時間監控器(S) 固定 性能監控器(A) ð 單元間 🗊 功能塊 更改機型(P) 🔜 巨集 Ē 🍃 副程式型巨集

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

連線與模組設定

7. 點擊「獲取連接到 PLC 的單元組態資訊」並按是·以讀取使用者現有的定位運動單元型號。

圖 1.2.7

8. 出現 CPU 單元和定位運動單元的型號後·點擊右下角的 OK。

圖 1.2.8

MD37UC01-2405

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

9. 確認單元配置下方的型號是否與實體控制器的型號一致。

圖 1.2.9

10. 確認通訊模式為 USB 後·按 PLC 傳輸 > 執行·此時定位運動單元右上角的顯示燈會由紅轉綠(請參 考圖 1.1.2 區域 E)·代表 CPU 單元和定位運動單元的設定成功。

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

11. 單元編輯器設定完成後,先將通訊模式設為乙太網,再點擊通訊設定 > 乙太網 > 查找連接目標。

KV STUDIO	
檔案(F) 檢視(V	監控器/模擬器(N) 運轉記錄/重放(R) 工具(T) 視窗(W) 說明(H)
i 🗋 🦰 📰 📾	🖻 🖹 🗟 🛑 🗟 🖉 🔢 ZX8 🔹 🔹 🖬 📽 📾 🕼 🗹 🛒 🏛 🔅 📟 🗄
: _4 ∺ ≡ ≇	☞ ﷺ 肇 5 ⓑ 🗛 🔍 ● ► ■ Ⅱ ₩ ▲ ∀ ⊁ ▼ ₩ ≻ ♥ 🖑 못 Ở 🗄
	PC側通訊埠
	○USB(U) ○序列(S)
	●乙太網(E) ○Bluetooth(H) ○資料機(M)
	乙太綱設定
	IP位址(I) 192.168.0.10 查找連接目標(F)
	埠篮(I') 2500 建链测试(T)
	□ 經由設定(R)
	PC 側通訊埠:USB YIDI環由:工作標由
	經田 門 路:个經田 連接機型:
	详細說定(A)
	連接目標清單(L) ▼ OK 取消

圖 1.2.11

12. 點擊與 CPU 單元連線的網卡並執行查找。

查找連接目櫄				×		
選擇網卡 網卡(N) Intel(R) Gigabit CT Desktop Adapter IP位址 Intel(R) Ethemet Connection (14) 1219-V IP位址 Intel(R) Ethemet Connection (14) 1219-V 子網路總罩 255.255.255.0 埠號(P) 8500 軟行查找(S) 中斷(B) 在廣播包可達到的範圍內檢索乙太網連接單元。(僅限KY) ※連接單元的台數不同,網路的負載會變大。 檢索結果						
™未超未 MAC位址	連接構型	IP位址	専案名稱			
			選擇	取消		

連線與模組設定

13. 按下執行查找幾秒後,搜尋結果會顯示在下方。選擇連線機型後點擊選擇。

查找連接目標						×	
選擇網卡 網卡(N) IP位址 子網路遮罩	Intel(F 192.1 255.2	Intel(R) Gigabit CT Desktop Adapter 192.168.0.100 255.255.255.0					
埠號(P) 在廣播包可達到 ※連接單元的 檢索結果	8500 的範圍內 台數不同	檢索乙太網連 納路的負載會	執行査找 (3) 中 8單元。(僅限KV) 9變大。	簫f (B)			
MAC位址 00-01-FC-34-7E-3	21	連接機型 KV-7500	IP位址 192.168.0.10	専案名稱 TEST4			
				選擇	取消	i	

圖 1.2.13

14. 點擊 OK · 完成連線。

通訊設定		×				
-PC 側通訊埠—						
O R2B(A)	○序列(\$)					
◉ 乙太網(E)	◯ Bluetooth(H)	○資料機(M)				
乙太網設定						
IP位址(I)	192 . 168 . 0 . 10	查找連接目標(F)				
埠號(P)	8500	連接測試(T)				
□ 經由設定(R						
PC 側通訊埠:USB VIDT經由:不經由 經由網路:不經由 連接機型: 詳細設定(A)						
連接目標淵	f單(L) ▼ OK	(取消				

圖 1.2.14

MD37UC01-2405

<u>E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO</u>

連線與模組設定

15. 將 KV STUDIO 模式切換成監控器,確認運動單元型號的燈號為綠燈,表示 PC 與 CPU 單元連線完成。

🎆 KV STUDIO - [監控器: KV-7500] - [12 *]							
檔案(F) 編輯(E) 檢視(V) 程:	式(M) ST/腳本(S) 轉拍	負(A) 監控器/模擬器(N) 除錯(D) 工具(T)	視窗(W) 說明(H)				
i 🗋 🤒 🔒 📾 📾 🗟	🛯 🗟 🕜 🗄 🛍 乙太網		' 🐝 🏛 🍓 💷 🔛 🗄 👫 양동 대 양원 다 양				
i 🔏 🏣 📰 🜌 🐼 🎬 🖷 🏅	5 💀 😼 🗕 🔍	▶ 🔳 ▲ ▼ > 🔘 ↓	🕛 🗣 🙆 💷 🕴 監控器 💽 🔽				
專案 中 X	[1] 軸控制設定 🛛 🗙	Main 🗙					
■ 副 單元配置 ■ 日 [0] KY-7500	顯示飾選(P) [顯示級)	町全部 🗸 🛤 🖳 🗛 🐯 🕻	8				
R [1] KV-XHO4ML R34			車由1 :				
🖬 🐻 [2] KV-XH16EC R38		360 度顯示	<u></u>				
1 切換單元配置	留位应槽藕墒	旋轉角擇近	執行				
		座標轉換分子	625				
標號		座標轉換分母	524288				
- 📲 CPU 条統設定		軟限位坐標系	邏輯条				
宣 🚉 程式: 12		軟限位正側	不使用				
		生らの月 パントナン 通道の会社事業	0.000				

圖 1.2.15

16. 確認驅動器通訊格式為 MECHATROLINK-III 且完成設定至「驅動器就緒」狀態(詳細的設定操作可 參考《E 系列驅動器 Thunder 軟體操作手冊》)。主控權切換需為控制器·使 Keyence 控制器定位運 動單元可與驅動器連線。

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

1.3 軸配置

1. 將 KV STUDIO 模式切成編輯器,點擊要與驅動器連線的定位運動單元,並開啟軸構成設定。

圖 1.3.1

 此時會出現以下畫面,點擊右側的伺服馬達兩下後,左邊會產生伺服馬達的圖示。請在右下角處輸入 驅動器的相關資訊。

[1] 軸構成設定	×
KV-XH04ML 設定最大軸數 MECHATROLINK-III 通訊短期() (20和短期) 1091	MECHATROLINK-III 從站一覽 SV2 何服馬達
	● 世境 馬達 ● 世境 馬達 ● 世境 馬達 ● 近日 ● 近日
	OK 取消

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

連線與模組設定

3. 打開驅動器面板的蓋子·觀察 SW1 和 SW2。旋鈕的箭頭指向表示驅動器的站號·SW1 指的是十位 數·SW2 指的是個位數·但請留意有些站號驅動器不支援·如圖 1.3.4 表格所示。當 SW1=0·SW2 的值不能為 0 到 2 的數字;當 SW1=F·SW2 的值不能為 0 到 F 的數字。若驅動器的站號是上述的數 字·請轉動 SW1和SW2 的旋鈕·避開上述的範圍並且重新上電·最後將驅動器的站號輸入至圖 1.3.4 所示的站位址。

圖 1.3.3

何服用法

			19J/IK/#22	
			軸編號(N)	1
			軸注釋(A)	
			站位址(D)	8 📫
			擴展位址(E)	0
SW1	SW2	站號位址	🗹 自動讀取參數	牧(P)
0	0 to 2	保留		設定(S)
0	3	03h		
l	I			
E	F	Efh		
F	0 to F	保留	OK	取消

圖 1.3.4

註:

若驅動器為龍門設置,從軸的 SW2 需設定為 8,否則可能造成龍門通訊錯誤。

連線與模組設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

4. 站位址設定完成後,此時先不設定座標轉換計算,待後續第二章完成座標單位設定後再進行設定。

圖 1.3.5

5. 點擊 PLC 傳輸,將現有的設定值輸入至控制器中。

圖 1.3.6

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

連線與模組設定

6. 點擊**執行**。

🎆 傳輸程式 [通訊目標:KV-7500 路徑:乙太	網 192.168.0.10]	×
傳輸專案(I)		
専案		
☑ 單元設定資訊		
▲ 全域元件注釋		
│ ☑ 全域標號		
☑ CPU 条統設定		
☑ 程式		
─────────────────────────────────────		
□ 記錄/追蹤設定資訊		
□ □ 乙太網/序列功能設定資訊		
▲ 描寄存器設定		
│ └── 定位單元參數	單元設定資訊	
全部選擇(3) 全部解除 □ 清除 PLC 內的程式(Q) ▲ 注意	D)	
經由乙太網執行傳輸。傳輸單元設定資訊後 更改乙太網設定,則可能無法通訊。	3	
◎ 以 PROGRAM 模式傳輸(P)		
○以RUN 模式傳輸(R)		
執行(E) 取消(C		

圖 1.3.7

MD37UC01-2405

連線與模組設定

(此頁有意留白。)

2. 參數設定

MD37UC01-2405

參數設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

1. 點擊軸控制設定,設定座標單位和小數點位置,再點擊上方的座標轉換計算。

🎆 KV STUDIO -[編輯器: KV-7500)] - [test5 *]		
檔案(F) 編輯(E) 檢視(V) 程:	式(M) ST/腳本(S) 轉	負(A) 監控器/模擬器(N) 除錯(D) 工具	(T) 視窗(W) 說明(H)
i 🗋 🤭 🔒 📾 🖻 🚵 🖷	🛯 🗟 🕜 🛛 🔛 乙太網	- i 🗈 F 📲 🔂	🛯 🛒 🏥 🚔 💷 🔛 🔛
12 注意 🗄 😕 🐼 躍 📬 🏅	ि 🗟 😼 🛼 🔘 🔘 ।	► II K ▲ K H ▼ >> (2 🖑 🗣 🕐 🔤 🕴 編輯器
專案 早 X	[1] 軸控制設定 🗙	[1] 單元通用設定 🛛 🗙	
■ 副 單元配置	顯示篩選(F) [顯示級)	別 全部 🛛 🗸 📑 🔁 🔤	\$
EtherNet/IP R3C			— — — — — — — — — — — — — — — — — — —
💼 📕 [1] KV-XHO4ML R34		座標單位	mm 💌
小 軸構成設定		小數點位置	0.001
🔁 單元通用設定	單位座標轉換	360 度顯示	否
🔹 🔤 🦉 軸控制設定	+ 1212 184+0123	旋轉角擇近	
▶ 點參數		座標轉換分子	125
🖬 🦄 同步控制設定		座標轉換分母	1048576
		軟限位坐標系	邏輯系
👘 🚔 單元程式		軟限位正側	不便用
👘 🤹 選項設定	軟體限位座標	軟限位正側座標	0.000 mm
🖻 📔 [2] KV-XH16EC R38	•	軟限位負側((K))	个使用
	++^#>0	軟液位負側燈標	0.000 mm
- - - - - - - - - - - - -	毗 錯誤	版位開闢 錯誤設定	設為錯誤
一 神野		機動位果婚別物源	INC

圖 2.1

2. 設定完相關的參數後,點擊**高級設定**,完成編碼器解析度與伺服電子齒輪比設定。

圖 2.1、圖 2.2 的設定以馬達一圈(1mm)的解析度 8388608 pulse/rev 和電子齒輪比 1:1 為範例。

座標轉換計算 [軸1 : E1]	>	<	
計算出符合動作環境的座標轉換設示 動作環境	Е值。		
槵械配置(M) 其它 ∨	<u>輸出軸時1圈的移動量</u> L = 1.000	高級設定	×
減速比 nn	座標單位(Y) mm 加德比韓側1(O)	編碼器解析度(E) 伺服電子齒輪分子(N) 伺服電子齒輪分母(D)	8388608 PLS/rev
■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	高級設定(H)		DK 取消
計算結果	執行計算(E)	KV STUDIO	×
在動作環境中, 0.0 8388.608 · 技如下約 座標轉換分母 = 10	101mm 移 助师必需的 PLS 數如下: 示, 設定轉控制通用設定的座標轉換比。 48576 125 誤差資訊(R)	i #	息射設定嗎?
	● OK(₩) 表演(C)	是	:(Y) 否(N)

圖 2.2

參數設定

 開啟軸控制設定,完成運轉速度、JOG、原點復歸參數設定。絕對位置檢測系統則根據編碼器設定, 增量式設 INC;絕對式設 ABS。

🎆 KV STUDIO -[編輯器: KV-7500)] - [test5 *]		
檔案(F) 編輯(E) 檢視(V) 程	式(M) ST/腳本(S)	轉換(A) 監控器/模擬器(N) 除錯(D) 工	具(T) 視窗(W) 說明(H)
i 🗋 🤒 🔒 🗟 👘	🖥 🗟 🕜 🗄 🔛 Zz	大網 🔹 🔛 🐨 🖓 🔂 [🕺 🛃 🏭 🏥 🔤 🔃
1.2 注注注意 🖉 📾 🖷 🗍	- 58 58 🚽 🔘 🌘		
直案 几 X	[1] 軸控制設定 3	×	
			P
[0] KV-7500	親不師進(F) [網小		<u> </u>
EtherNet/IP R3C		360 度翻不	軸1:E1
■ [1] KY-XHO4ML K34	單位座標轉換	旋轉角挥近 应連載換分子	執行
10.1000		座標轉換分母	524288
● 軸控制設定		軟限位坐標系 軟限位正側	選輯系 不使田
■ ●	軟體限位座標	軟限位正側座標	0.000 mm
		軟限位負側	不使用
二 単元程式 潮液が完	軸錯誤	限位開闢錯誤設定	設為錯誤
選戦設定 国 [2] KV-XH16EC R38		總對位置檢測系統 停止方法価作使能繼雷器 OPP)	INC 滅速信止
10月 11111111111111111111111111111111111		停止方法(軟限位)	滅速停止
西 元件注釋	軸控制でお	停止方法(其它錯誤)	滅速停止 正方向動作正兼脈波輸出
	THE PERSON AND A P	伺服OFF時機	軸停止後伺服 OFF
目 晶 程式: test5		伺服結束檢查時間 	0 ms
📱 💼 每次掃描執行型模組		切換位置控制模式時的速度關值	50 xpm
■ 📸 Main		速度切換選擇 選擇加/航海設定	連續(當前點速度連續) 比來
● 後備棋組	位置控制通用	選擇直線插補速度	合成速度
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		選擇螺旋插補速度 停止感測器或入浴式面面的海醫課	3 軸合成速度 动動作優先
■ 單元間同步模組	運轉速度	運轉起動速度	0.000 mm/s
■ 切服塊		最高運轉速度 運動加速度 時期	5.000 mm/s
🔄 副程式型巨集		運轉加速曲線	SIN
		運轉加速 SDN斜率	100 %
二 元件初始值 言 副 設定機案存毀		運轉滅速度時間	SIN
0:記憶卡		運轉滅速 SIN斜率 ICC 提動速度	100 % 5 000 mm/c
1:CPU 記憶體		JOG 高速速度	5.000 mm/s
■ 💾 用户文福		JOG 加速度/時間 TOG 加速曲線	1.000 mm/s/ms STM
	JOG	JOG 加速 SIN斜率	100 %
		JOG 滅速度/時間	10.000 mm/s/ms eng
		JOG 滅速 SIN斜率	100 %
		JOG 寸動移動量 原點復歸支法	1.000 mm DOG 式(有 2 切)
		原點復歸起動速度	0.000 mm/s
		原點復歸爬行速度	500.000 mm/s
		原點復歸加速度/時間	10.000 mm/s/ms
		原點復歸加速曲線 原點復歸加速曲線	SIN 100 %
		原點復歸滅速度/時間	100 % 10.000 mm/s/ms
	原點復歸	原點復歸滅速曲線 原點復歸滅速曲 900 約20	SIN 100 m
		原點復歸方向	100 % 負方向
		原點座標	0.000 mm
		原點復歸時暫停時間	0.000 mm O ms
		接觸力矩時間	0 ms
		按周辺理問1 初始位置座標	0.000 mm
< >		初始位要自動教動	<u></u>
専案 庫	絕對位置隨動控制	温明速度 加速度/時間	5000,000 mm/s 10,000 mm/s/ms

圖 2.3

註:

最高運轉速度需等於馬達的額定轉速。原點復歸、JOG、運轉速度中的啟動速度、高速速度、加減速度/時間、加速 曲線的設定為相同的概念,第3章將會詳細說明。此處的單位1mm/s表示馬達轉速為1rev/s (60 rpm)。

MD37UC01-2405

參數設定

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

4. 参數設定完成後,點擊 PLC 傳輸,將 KV STUDIO 模式切換成監控器。

圖 2.4

5. 若需儲存此專案·先將 KV STUDIO 模式切換成編輯器·再點擊檔案>保存專案或專案另存為·並設 定專案名稱和位置·即可完成存檔。

圖 2.5

MD37UC01-2405

參數設定

補充說明:

使用者第二次使用 KV STUDIO 時,若想使用之前專案時,可點擊檔案>打開專案,並選取之前設定 好的專案或點擊圖 2.7 橘框處,以讀取上一次輸入的 PLC 專案。

	K\	/ STUDIO													
E	檔案	(F) 檢視(V)	監控器/模擬器	¥(N) 運轉	記錄/重放(R)	工具(T)	, 視窗(W) 說明	(H)						
		新建專案(N)		Ctrl+N	乙太網		-	: 📼 🖬	7 - 1	i) 🖸 🖬	【監里		5 SF5	F4 SF4	F7 SF7 -OØ-
L	4	打開専案(O)		Ctrl+O				Н Н	V M	> 0) 🖳 🖱	Ó RO			-
		登錄感測器設	定檔(E)												
		記憶卡(M)			•										
		設定印表機(V	V)												
		在最近的專案	(D)	I	•										
		退出(X)													
					_										

圖 2.6

圖 2.7

MD37UC01-2405

參數設定

(此頁有意留白。)

3. 試運轉

3.	試運	轉	3-1
3	.1	定位控制	3-2
3	.2	起動速度、加減速度/時間、加速曲線	3-4

MD37UC01-2405

3.1 定位控制

1. 確認 KV STUDIO 模式為監控器·點擊參數設定的定位運動單元後·按右鍵 > 試運轉 > 定位控制 > 軸。

🎆 KV STUDIO -[監控器: KV-7500] -	[test5 *]					
檔案(F) 編輯(E) 檢視(V) 程式(I	M) ST/腳本(S) 轉拍	魯(A) 監控器/模擬器((N) 除錯(D) _	E具(T) 視窗(W)	說明(H)	
i 🗅 🤭 🗄 📾 鹶 🛍 🗟 👘 [👌 🕜 🗄 🛍 乙太網	-	₽₽₩₽	😧 🛃 🏭 関		F4 SF4 F7 SI
i 🖍 🏣 📰 💥 🐼 🎬 🖷 🏅 🤅	Po 🗈 🚽 🔵 🔵 🕨	► 🔳 II 🕅 🔺 I	() ▼ ≫ >	> 🗢 🤚 🗣 Ö	lam 監控器	•
専案 및 X [1	l] 單元通用設定 🛛 🗙	[1] 軸控制設定 (1)	×			
■ 副 單元配置	夏示篩選(F) 【夏示級別	別 全部	- 😫 🖶 🗠			
EtherNet/IP R3C					車由1:E1	
E 6 [1] KY-XH04 201		座標單位			mm 💌	
● 動 動構成設計 ● 元約	編輯器(U)	小數點位置			0.001	
🚺 單元通用語 🛛 👾 🗸		360 度顯示				
🖕 軸控制設定 👘 👘		旋轉角擇近			執行	
■ ■ ■ 點參數 ■ 単元團	監控器(C)	座標轉換分子			625	
🚊 🧠 同步控制:		座標轉換分母			524288	
SV2 設定 ★単元測	宣蹤(A)	軟限位坐標系			邏輯系	
📑 單元程式 📑 📑 試運動	ēm ▶	定位控制(D) ▶	抽 1(1)		不使用	
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		¥¤1(1)		0.000 mm	
📴 🔓 [2] KV-XH16 - 변환영	空制(S) ▶	速度控制(S) ▶			个使用	
	從訪設備(F) ▶	扭力控制(T) ▶			U.UUU mm	
					設為錯誤	
- 標號		絶對位置破測系統	E 00 o mp		INC	
		1816161方:关闭制作使完全型	Щ 32 ПРИ)		(氯碘合化)	

圖 3.1.1

 檢查「軸錯誤」是否亮紅燈。若有錯誤,先點擊錯誤清除;若無錯誤,則點擊強制動作使能解除。當 「動作就緒」為綠燈後,再點擊強制伺服 ON 解除並等待「伺服就緒」轉為綠燈,動作順序不可顛倒。 完成「伺服就緒」後即可執行 JOG 正負方向移動。

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

- 試運轉
- 3. JOG 移動時,可開啟 Thunder 的 Scope,選擇 7. Motor velocity 查看馬達的速度回授,確認設定的速度命令與馬達實際的速度回授是否相符。根據參數設定的 JOG 高速速度 5.00 mm/s,可對應的轉速為 300 rpm。

圖 3.1.3

註:

- (1) 若想要等比例實現定位運動單元設定的位置、速度、加減速,請將驅動器參數電子齒輪比 Pt210、Pt20E 設定為 1:1。
- (2) Thunder 1.9.20.0 以上與驅動器韌體版本 2.8.16 以上支援非 1:1 的電子齒輪比設定。

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

3.2 起動速度、加減速度/時間、加速曲線

1. 使用前述設定方法將圖 3.2.1 的參數設定完成。

	JOG 起動速度	1.000 mm/s
	JOG 高速速度	25.000 mm/s
	JOG 加速度/時間	0.010 mm/s/ms
	JOG 加速曲線	SIN
JOG	JOG 加速 SIN斜率	100 %
	JOG 減速度/時間	0.010 mm/s/ms
	JOG 減速曲線	直線

圖 3.2.1

2. 打開 Thunder > 工具 > 即時資料擷取, 並點擊開始以擷取速度命令 dPosVelCmd。

白 通訊設定 G Real-time data collection 2185	×
PROFINET設定 檔案 (File) 工具 (Tools) 頁號(Sessions)	
相位初始化設定 自動調適 +	
絶對式編碼器初始化 類比命令偏壓調整 動性制動器 動性制動 現代 () () () () () () () (
10月2日日日子/日本 第門控制系統 電子凸論	
日朝/御別 規収変数(取多6組) 日朝/御別 伊osUe1Cmd 「 「 「 「 「 」 「 」 「 」 「 」 の 」 の 目前/御別 「 」 の の	
I/O設定 (用)均(15) 即時資料擷取 停止	
頻譜分析 警報紀錄 如白的会会相交 End	
ath思発却マの面 還原出廠預設 面前面積	

圖 3.2.2

試運轉

3. 執行 JOG 正方向移動幾秒後放開,等待馬達停止。

試運轉 [定位控制] - 單元1	- 軸1: - KV-XH04ML		×
•••1 _{指令座標}		● 動作就緒	強制動作使能解除
03	98.804 _{mm}	🔵 伺服就緒	強制伺服ON 解除
	待 當前點編號	機 10 軸錯誤	錯誤清除
JOG		寸動	原點復歸
人 人 員方向 正方向	速度 100 ÷ %	負方向 正方	• <mark>3</mark>
示教		O \+++	
點編號 1 🔺	 ● 1點通轉 點編號 1 ▲ 		■ 探機: 無
			待機: 無 🗸 🗸
速度 1.000 mm/s		* *	待機: 無 🗸
棋式 獨立位置相對		×	存機: 無 🗸 🗸
🛃 🛃	▶ 開始	📕 減速停」	计 计 计 计 计 计 计 计 计 计 计 计 计 计 计 计 计 计 计

圖 3.2.3

4. 開啟 Thunder > 工具 > 即時資料擷取·點擊停止後再按圖形 (請參考圖 3.2.2),以產生圖 3.2.4。

MD37UC01-2405

5. 依據第 2 章馬達一圈 (1mm)的解析度為 8388608 pulse/rev 之設定 · 起動速度 1.00 mm/s 應對應 實際轉速 60 rpm; JOG 高速速度 25.00 mm/s 應對應實際轉速為 1500 rpm。 加速曲線選 SIN · 表示起動速度到高速速度的速度命令成曲線狀; 減速曲線選直線 · 表示高速速度到 起動速度的速度命令成直線狀。

加/減速度時間 0.010 mm/s/ms 對應的實際加速度為 0.6 rpm/ms,表示每 1 ms 速度增加 0.6 rpm。

圖 3.2.5

4. 原點復歸

4.	原點	復歸	4-1
Z	1.1	Z 相立即原點復歸	4-2
Z	1.2	限位開關上升緣	4-3
Z	1.3	原點感測器和Z相	4-4

MD37UC01-2405

原點復歸

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

4.1 Z 相立即原點復歸

原

1. 使用前述設定方法,將圖 4.1.1 原點復歸方法與方向設定完成。

	原點復歸方法	Z 相立即原點復歸
	原點復歸起動速度	0.000 mm/s
	原點復歸爬行速度	5.000 mm/s
	原點復歸運轉速度	5.000 mm/s
	原點復歸加速度/時間	1.000 mm/s/ms
	原點復歸加速曲線	SIN
	原點復歸加速 SIN斜率	100 %
點復歸	原點復歸減速度時間	1.000 mm/s/ms
	原點復歸減速曲線	SIN
	原點復歸減速 SIN斜率	100 %
	原點復歸方向	負方向
	原點座標	0.000 mm

圖 4.1.1

註:

Z 相立即原點復歸,無須外部輸入任何訊號就能使用。使用者若無法輸入外部 P-OT、N-OT、DOG、EXT-PROBE1 訊號至驅動器時可參考此方法。歸原點若要使用外部 P-OT、N-OT、DOG、EXT-PROBE1 訊號,必須先做驅動器的 I/O 設定(詳細設定操作可參考《E 系列驅動器 Thunder 軟體操作手冊》)。

2. 確定「動作就緒」和「伺服就緒」為綠燈時,即可點擊**原點復歸**。馬達會根據原點復歸方向移動,尋 找編碼器原點(index),找到原點後馬達會靜止。

圖 4.1.2

註:

若搭配增量式編碼器時,需注意編碼器是否支援 index 訊號輸出。

MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

原點復歸

4.2 限位開關上升緣

確定「動作就緒」和「伺服就緒」為綠燈時,點擊**原點復歸**。馬達往負方向移動,碰到 N_OT 訊號後會立即往正方向移動並脫離 N_OT 訊號。脫離後馬達會再往負方向移動,直到碰到 N_OT 才停止。此原點復歸方法僅支援負方向。

			試運轉 [定位控制] - 單元1 -	軸1: - KV-XH04ML	×
			軸1 指令座標	<u> 金融 注 金</u> 加	e能解除 M 解除
	原點復歸方法	限位開闢上升錄		发放果场的第一 軸錯誤 錯誤 涕	除
	原點復歸起動速度	0.010 mm/s		留月11未有於 用 当从,0	
	原點復歸爬行速度	0.500 mm/s	JOG	寸動	4復歸
	原點復歸運轉速度	0.500 mm/s			_
	原點復歸加速度/時間	0.100 mm/s/ms	< >	速度 100 🗧 %	0
	原點復歸加速曲線	SIN			
	原點復歸加速 SIN斜率	100 %			_
	原點復歸減速度時間	0.100 mm/s/ms	負方向 正方向	10% 100% 負方向 正方向	
原點復歸	原點復歸減速曲線	SIN	示教	試運轉	
	原點復歸減速 SIN斜率	100 %		● 112は漏錬 ○ 道崎漏錬	反復
	原點復歸方向	負方向			
	原點座標	0.000 mm			n
			座標 0.000 mm	座標 0.000 mm. ↓ (++巻 点	~
			速度 1.000 mm/s		~
			棋式 獨立位置相對	● 待職:無	~ v
			📡 載入	▶ 開始 📄 減速停止 📄 强	謝停止

圖 4.2.1

HIWIN. MIKROSYSTEM MD37UC01-2405

E系列MECHATROLINK-III驅動器搭配KEYENCE KV STUDIO

試運轉 [定位控制] - 單元1 - 軸1: - KV-XH04ML

×

4.3 原點感測器和 Z 相

確定「動作就緒」和「伺服就緒」為綠燈後,點擊**原點復歸**。當馬達往負方向移動,碰到原點感測器 EXT-PROBE1 訊號後,會反向移動脫離原點感測器 EXT-PROBE1 訊號。脫離後馬達會再返向移動,直到碰到原點感測器 EXT-PROBE1 訊號才停止。

			┿┪┨ 指令座標	• 0.000 mm	 動作就給 動作就給 動制動作使能解除 伺服就給 強制伺服ON 解除
	原點復歸方法	原點感測器和乙相	•	()機	
	原點復歸起動速度	0.010 mm/s		當前點編號已	● 剿捕決
	原點復歸爬行速度	0.500 mm/s	IOG		市の取得時
	原點復歸運轉速度	0.500 mm/s	100		
	原點復歸加速度/時間	0.100 mm/s/ms		速度 100 🗣 %	
	原點復歸加速曲線	SIN			
	原點復歸加速 SIN斜率	100 %			
	原點復歸減速度/時間	0.100 mm/s/ms	貧万回 止万回 1	0% 100% 1	自万问 止万问
原 點復歸	原點復歸減速曲線	SIN	示教	試運轉	
AN MALISCOP	原點復歸減速 SIN斜率	100 %		 1點運轉 	○ 連續運轉 反復
	原點復歸方向	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	點編號 1 ▲	點編號 1 🛓	1 ↔ 待機:無 🗸 🔺
	原點座標	0.000 mm	座標 0.000 mm	座標 0.000 mm	↓ 待機: 無 🗸
			連度 1.000 mm/s		- (存機: 無 →
			推步 漂台/位置/旧料		◆ 待機: 無 🗸 🗸
			1关24 180 立门立直州百到		
			載入	▶ 開始	📄 減速停止 📄 強制停止
					· · · · · · · · · · · · · · · · · · ·

圖 4.3.1

補充說明:

- 1. 上述為 Keyence 定位運動單元所支援的其中 3 個原點復歸方法,其他方法與詳細資訊可參考《KV-XH16ML/XH04ML 使用者手冊》第8章。
- 2. 原點復歸所使用的原點感測器與 DOG 訊號,會對應到驅動器的 EXT-PROBE1 輸入訊號。
- 3. Thunder 1.9.20.0 以上與驅動器韌體版本 2.8.16 以上才支援 EXT-PROBE1 相關功能。